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Abstract The evolution of a characteristic shock in a relaxing gas is investigated and its interaction with a weak
discontinuity is studied. A particular solution to the governing system, which exhibits space–time dependence,
is used to study the evolutionary behaviour of the characteristic shock; the properties of incident, reflected and
transmitted waves, influenced by the relaxation mechanism, together with the geometry of the fluid flow and the
background state at the rear of the shock, are studied.
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1 Introduction

It is well known that, at high temperatures, the internal modes of gas molecules get excited and, as a result, there is
a transfer of energy from one internal mode to another, until the equilibrium between these modes is re-established.
For instance, in the supersonic flight of projectiles at high altitude, or when the gas is compressed by the mechanical
action of a piston or by the passage of a shock front, temperatures of many thousands of degrees Kelvin can easily
be attained; in this process, the whole energy goes initially to increase the translational energy, and it is followed by
a relaxation from translational mode to the rotational mode and from translational mode to vibrational mode until
the equilibrium between these modes is re-established. Indeed, the vibrational modes, which unlike translational
and rotational modes relax for a longer duration, substantially influence the flow behaviour. Thus, it is essential that
at high temperatures the non-equilibrium effects must be considered in the fluid-dynamic equations; but then the
analysis becomes considerably more complex than the classical gas-dynamic flow because of (i) nonlinear coupling
between the relaxing mode and the fluid flow, and (ii) non-existence of the self-similar nature of the classical flow
field. It may be remarked that the various energy modes of air at meteorological temperatures get excited; the
vibrational energy content of the air has nevertheless a dominant effect on the sound absorption and on the structure
of nonlinear waves (see [1–6]). Apart from this, the system governing the motion of a relaxing gas possesses several
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features that make it worth for further study (see, for instance, [7, pp. 236–237] and the references therein). This,
indeed serves as a great motivating factor to look for new insight into the behaviour of the wave pattern that finally
develops under the influence of a rate process, included in the system of equations governing the motion. Here,
instead of working with complicated actual air composition, we use a simple relaxing gas model which brings out
all the important features without unduly complicating the calculations. The quantity Q(p, ρ, σ ), which appears
in the governing system of equations and denotes the rate of change of vibrational energy σ , is a known function.
The situation Q = 0 corresponds to a physical process involving no relaxation; indeed, it includes both the cases
in which the vibrational mode is either inactive or follows the translational mode according as the flow is either
frozen (σ = constant) or in equilibrium (σ = σ̄ ), where σ̄ is the equilibrium value of σ evaluated at local p and ρ.

As the relaxation mechanism makes the interaction problem considerably cumbersome, we felt that a simple
analysis applicable to planar and radially symmetric motions, where we can use special solutions, would be of
interest to elucidate the effects of relaxation on the wave patterns, that finally develop. As the governing system
with relaxation is still hyperbolic, in order to study the shock interaction problem, we look for a particular solution
of the governing system through which the shock propagates, and investigate the effects of initial discontinuities
associated with the incident wave, the geometry of the fluid flow together with the background state at the rear of
shock, and the relaxation mechanism present in the flow on the evolutionary behaviour of a characteristic shock
and the reflected and transmitted waves after the collision. To our knowledge, such an analytical and numerical
description of a complete history of evolution of a characteristic shock has not been studied previously. This paper
brings out some interesting features of the evolutionary behaviour of waves in a relaxing gas.

2 Basic equations

The governing equations can be written in the matrix form [1, 2],

Ut + AUx = f, (1)

where U = (ρ, u, p, σ )tr, f = (−mρu/x, 0,−((γ − 1)ρQ + mγpu/x),Q)tr , and

A =

⎛
⎜⎜⎝

u ρ 0 0
0 u 1/ρ 0
0 ρa2 u 0
0 0 0 u

⎞
⎟⎟⎠ .

Here, x is the distance, t the time, ρ the density, u the particle velocity, p the pressure, σ the vibrational energy,
γ the frozen specific-heat ratio in the gas and a = (γp/ρ)1/2 the frozen speed of sound. A subscript denotes
partial differentiation with respect to the indicated variable unless stated otherwise, and the superscript tr denotes
transposition. The system (1) represents a flow which is planar, cylindrically symmetric or spherically symmetric
according as m = 0, 1 or 2, respectively. The quantity Q = (σ̄ − σ)/τ denotes the rate of change of vibrational
energy, where σ̄ = σ0 + c(ρρ0)

−1(pρ0 − ρp0) and the suffix 0 refers to an initial equilibrium reference state; the
quantities τ and c which are, respectively, the relaxation time and the ratio of vibrational specific heat to the specific
gas constant, are assumed to be constant. The equation of state is taken to be of the form p = ρRT .

3 Characteristic shock

For a characteristic shock, the shock surface coincides with a characteristic surface and its velocity coincides with
an eigenvalue of the system, both ahead and behind the shock (see [8], [9, pp. 23–26], [10, pp. 74–75], [11, p. 43]).
A sufficient condition for the existence of a characteristic shock is that the corresponding eigenvalue is exceptional
(linearly degenerate), i.e., ∇λ(i) · R(i,k) = 0 where R(i,k), k = 1, . . . , mi , denote the right eigenvectors corre-
sponding to the eigenvalue λ(i) with mi its multiplicity and ∇ the gradient operator with respect to the field vector
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U . If the corresponding eigenvalue is multiple (i.e., mi > 1), then the shock is characteristic as the eigenvalue is
necessarily linearly degenerate (see ([9, pp. 23–36)], [12, pp. 85–86]). The evolution of characteristic shocks in
different material media has been studied by Anile et al. [10], Virgopia and Ferraioli [13] and Jena and Sharma
[14]. The matrix A in (1) has eigenvalues

λ(1) = (u + a), λ(2) = u (a double root), λ(3) = (u − a), (2)

with the corresponding left and right eigenvectors

L(1) = (0, ρa, 1, 0), R(1) = (1/(2a2), 1/(2ρa), 1/2, 0)tr,

L(2,1) = (−a2, 0, 1, 0), R(2,1) = (−a−2, 0, 0, 0)tr,

L(2,2) = (0, 0, 0, 1), R(2,2) = (0, 0, 0, 1)tr,

L(3) = (0,−ρa, 1, 0), R(3) = (1/(2a2),−1/(2ρa), 1/2, 0)tr.

(3)

The multiplicity of the eigenvalue λ(2) = u indicates that there exists a characteristic shock propagating with the
speed V = u. Since, across a characteristic shock no mass flow takes place, the Rankine–Hugoniot conditions
across this shock can be given by [u] = 0, [p] = 0, [ρ] = ζ and [σ ] = η, where ζ and η are unknown functions of t

to be determined; here [X], defined as [X] = X −X∗, denotes the jump in X across the characteristic shock, where
X∗ and X, on the right-hand side, are the values just ahead of the shock and behind the shock, respectively. The
evolutionary law for ζ and η can be obtained by multiplying (1) by the eigenvectors L(2,1) and L(2,2), respectively;
and then one obtains, on forming the jumps across the characteristic shock in the usual manner,

L
d[U ]

dt
+ [L]dU∗

dt
= L[f ] + [L]f∗ (4)

where d/dt = ∂/∂t + u∂/∂x denotes the material derivative following the shock. Now, using (1) and (3) in (4), we
obtain the following transport equations for the quantities ζ and η

dζ

dt
= −

(mu

x
+ ux

)
ζ + (γ − 1)(ρ − ζ )

γ τp
{ζ(σ0 − cp0/ρ0 − σ + η) − ρη},

dη

dt
= − 1

τ

{
η + cpζ

ρ(ρ − ζ )

}
. (5)

3.1 Particular case

Let us consider the case when the flow behind the characteristic shock is described by the following equations

u(x, t) = k(t)x, ρ = ρ(t), p = p(t), σ = σ(t), (6)

where the particle velocity exhibits linear dependence on the spatial coordinate; indeed, such a state can be visual-
ized in terms of an atmosphere filled with a gas which has spatially uniform pressure variations on account of the
particle motion and the spatially uniform relaxation rate. This class of solutions of the governing system has been
discussed by Pert [15], Sharma et al. [16] and Clarke [17]; Pert showed that such a form of the velocity distribution
is useful in modelling the free expansion of polytropic gases, and it is attained in the limit of large time.

In view of (6), Eqs. (1)1 and (1)2 yield on integration the following forms of the parameters ρ and k

ρ = ρ0(1 + (t − t0)k0)
−(m+1), k(t) = k0/{1 + (t − t0)k0}, (7)

whereas Eqs. (1)3 and (1)4 lead to the following system of ordinary differential equations (ODEs) in p and σ

dp

dt
+

(
γ (m + 1)k + (γ − 1)c

τ

)
p − (γ − 1)

τ
ρσ + (γ − 1)

τ
ρ (σ0 − cp0/ρ0) = 0,

dσ

dt
− cp

τρ
+ σ

τ
− 1

τ

(
σ0 − cp0

ρ0

)
= 0, (8)
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where k0 and ρ0 refer to the initial reference state. Using the dimensionless variables

ζ̃ = ζ/ρ0, ρ̃ = ρ/ρ0, p̃ = p/p0, η̃ = ηρ0/p0, σ̃ = σρ0/p0,

t̃ = t/t0, τ̃ = τ/t0, k̃ = kt0, k̃0 = k0t0, σ̃0 = σ0ρ0/p0,

and then suppressing the tilde sign (for the sake of convenience), we can write the evolutionary equations (5) in the
following form

dζ

dt
= −(m + 1)kζ + (γ − 1)(ρ − ζ )

γ τp
{ζ(σ0 − c − σ + η) − ρη},

dη

dt
= − 1

τ

{
η + cpζ

ρ(ρ − ζ )

}
, (9)

where ρ = (k0(t − 1) + 1)−(m+1), k = k0/(k0(t − 1) + 1) and p and σ solve the system (8).
The evolutionary behaviour of the characteristic shock influenced by the relaxation effects, the background state

behind the shock and geometrical spreading of the fluid flow, which enter through the parameters c, τ, k0 and m,
can be studied by solving the system of ODEs (9) together with (8) and the initial conditions p|t=1 = p0, σ |t=1 =
σ0, ζ |t=1 = ζ0 and η|t=1 = η0. The parameter c is of order one or less; in particular for air, it is of order 10−1 to
10−3, whilst the parameter τ covers the whole range from very small to very large (see [2,5]). The computations of ζ

and η have been carried out for plane (m = 0), cylindrically symmetric (m = 1) and spherically symmetric (m = 2)
flows by taking γ = 1.4 and the values of c and τ lying in the range 0.005 ≤ c ≤ 0.7 and 5 ≤ τ ≤ 15; Figs. 1 and 2
show the evolution of a characteristic shock influenced by the physical parameters c, τ,m and k0. It is observed that
an increase in c or τ−1 causes ζ and η to decrease, showing thereby that the characteristic shock is progressively
smoothened out under the diffusive effect of relaxation present in the medium (see, Figs. 1(a), 1(b), 2(a) and 2(b)).
We also note that there is an extra attenuation owing to geometrical spreading and flow variations behind the shock
in the sense that an increase in m or k0 causes ζ and η to decrease (see, Figs. 1(c), 1(d), 2(c) and 2(d)). It is possible
to establish the small- and large-time behaviour of some of the variables using standard asymptotic analysis; indeed,
for

√
β < α/2, where α and β are positive quantities defined as β = γ (m+1)k0

τ
and α = 1+c(γ−1)

τ
+γ (m+1)k0, we

find from (8) and (9) that ρ ∼ ρ0, k ∼ k0, p ∼ p0 +O((t − 1)2), σ ∼ σ0 +O((t − 1)2), ζ ∼ ζ0{1 − (t−1)2

2γ
β} and

η ∼ η0{1− (t−1)2

2γ
β} as t → 1, showing thereby that in the neighbourhood of t = 1, both ζ and η decrease from their

initial values ζ0 and η0. The numerical results, depicted in Figs. (1)–(2), are in conformity with the above-mentioned
asymptotic results. Similarly, when

√|κ| < |δ|/2 where κ = (γ −1)(c−τ�)/(γ τ 2) and δ = (γ +(γ −1)τ�)/(γ τ)

with � = (1+c(γ−1))
γ+c(γ−1)

(
c−σ0
ck0

)
, we find from (8) and (9) that, for a characteristic shock for which ζ and η are small,

the variables ρ, k, p, etc.have the following asymptotic forms for large t :

ρ ∼ O(1/t), k ∼ O(1/t), p ∼ O(1/t), σ ∼ O(1/t)

ζ ∼ O(exp(−t)), and η ∼ O(exp(−t)) as t → ∞,

where  = −(δ + √
δ2 + 4κ)/2, showing thereby that the wave decays exponentially; this is again in conformity

with the numerical results.

4 Evolution of the weak discontinuity

The evolution of a weak discontinuity for a hyperbolic quasi-linear system of equations satisfying Bernoulli’s law
has been studied quite extensively in the literature (see, for instance, [8,18,19]). The transport equation for the
weak discontinuities across the ith characteristic of a hyperbolic system of n equations of the type (1) is given by
(see [20])

L
(i,k)
b

d�i

dt
+ L

(i,k)
b (Ubx + �i)(∇λ(i))b�i + {(∇L(i,k))b�i}tr dUb

dt

+(L
(i,k)
b �i)((∇λ(i))bUbx + λbx

(i)) − ((∇(L(i,k)f )b)�i = 0, (10)
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Fig. 1 Variation of ζ with time influenced by the parameters c, τ,m, k0. (a) corresponds to the case when k0 = 0.1,m = 1,

σ0 = 0.005, ζ0 = 0.01 and τ = 5; (b) uses k0 = 0.1,m = 1, σ0 = 0.005, ζ0 = 0.01 and c = 0.001; (c) corresponds to the
case k0 = 0.1, c = 0.1, σ0 = 0.005, ζ0 = 0.01 and τ = 5; (d) uses c = 0.1,m = 1, σ0 = 0.005, ζ0 = 0.01 and τ = 5
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Fig. 2 Variation of η with time influenced by the parameters c, τ,m, k0. (a) corresponds to the case when k0 = 0.1,m = 1,

σ0 = 0.005, ζ0 = 0.01 and τ = 5; (b) uses k0 = 0.1,m = 1, σ0 = 0.005, ζ0 = 0.01 and c = 0.001; (c) corresponds to the
case k0 = 0.1, c = 0.1, σ0 = 0.005, ζ0 = 0.01 and τ = 5; (d) uses c = 0.1,m = 1, σ0 = 0.005, ζ0 = 0.01 and τ = 5
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where λ(i), i = 1, 2, 3 . . . p, are p distinct real eigenvalues of the coefficient matrix A, assumed to be ordered so
that λ(p) < λ(p−1) < λ(p−2) < · · · < λ(1), with constant multiplicities mi such that

∑p
i=1 mi = n. Here, we denote

by L(i,k) and R(i,k), k = 1, 2, . . . , mi , the left and right eigenvectors of A corresponding to the eigenvalue λ(i) and
the subscript b refers to the state ahead of the ith characteristic curve at the rear of the characteristic shock, and

�i =
mi∑
k=1

α
(i)
k (t)R

(i,k)
b , (11)

is the jump in Ux across the ith characteristic curve with α
(i)
k being the amplitude of the wave propagating along

dx/dt = λ(i). For the system under consideration, let �1 = α(1)R(1) denote the jump in Ux across the discontinuity
with amplitude α(1), propagating along the curve determined by dx/dt = λ(1) originating from the point (x0, t0)

in the region behind the characteristic shock that originates from the point (x1, t0) with x1 > x0. Then, on using
(1)–(3) and (11) in (10), we obtain the following transport equation for the incident wave amplitude in terms of the
dimensionless variables:

dα(1)

dt
+ (γ + 1)

4ρa
α(1)2 + �(t)α(1) = 0, (12)

where the wave amplitude α(1) and the wave location x have been non-dimensionalised by their initial values α
(1)
0

and x0, respectively, and

� = (γ + 9)

4
ux + mγu

2x
+ (5γ + 1)

ρa
px − aρx

ρ
+ (γ − 1)

2a2τ
(σ0 − σ − c) + ma

2x
+ (γ − 1)c

2τ
.

Equation (12) yields on integration α(1) = α
(1)
0 I (t){1 + α

(1)
0 J (t)}−1

, where I (t) = exp
(
− ∫ t

1 �(s)ds
)

and J (t) =
∫ t

1
(γ+1)

4aρ
I (s)ds. Using the particular solution described by (6)1, (7) and (8), in dimensionless form, we find that,

both I and J are finite and continuous on [1,∞). Indeed, I (t) → 0 as t → ∞ whereas J (∞)< ∞, implying
thereby that, when α

(1)
0 > 0 (i.e., an expansion wave), the amplitude α(1) eventually decays to zero. However for

α
(1)
0 < 0 (i.e., a compression wave), there exists a positive quantity α

(1)
c defined by α

(1)
c = (|J (∞)|)−1 such that

for |α(1)
0 | < α

(1)
c , α(1) → 0 as t → ∞, i.e., the wave decays; but for |α(1)

0 | > α
(1)
c , there exist a finite time tc given

by J (tc) = 1/|α(1)
0 | such that |α(1)| → ∞ as t → tc, showing thereby that a shock appears at t = tc only when the

initial amplitude exceeds a critical value α
(1)
c . Computed results are in conformity with the analytical results and the

corresponding situations are depicted in Figs. 3(a)–3(h), showing that, when 0 < α
(1)
c < −α

(1)
0 , an increase in any

of the variables c, τ−1, k0 or m delays the onset of a shock (see, Figs. 3(e–h)); however, if the initial amplitude is
less than this critical value, i.e., 0 < −α

(1)
0 < α

(1)
c , a compression wave eventually decays, and the various effects

such as relaxation, flow variations behind the shock and geometrical spreading serve to enhance the decay rate (see,
Figs. 3(a–d)).

5 Collision of the weak discontinuity with the characteristic shock

The simplest case of a motion, in the x − t plane, involving an interaction of a shock wave with a weak wave can
be envisaged when a piston, fitted in a gas-filled container, is instantaneously pushed into the gas column with a
uniform velocity giving rise to a shock that races ahead of it. If the piston is suddenly stopped at time, say t = t0,
it gives rise to an expansion fan, originating from (x0, t0), whose leading front overtakes the shock originating
from (x1, t0); such a perturbation creates a discontinuity in the acceleration of the shock front besides producing
reflected and transmitted waves. For a characteristic shock, this acceleration is not an unknown, and the amplitudes
of the reflected and transmitted waves can be completely determined. It is shown in [20] that the general theory for
problems of wave interaction, which originated from the work of Jeffrey [21], leads to the results obtained by Brun
[22] and Boillat and Ruggeri [23]; the theory has been successfully used for different material media (see [24–26]).
In order to study the nature of amplitudes of the reflected and transmitted weak discontinuities, we consider the
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Fig. 3 Variation of the amplitude α(1) with t influenced by the parameters c, τ, k0 and m when 0 < −α
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c . (a) corresponds to the

case when k0 = 0.001,m = 1, σ0 = 0.005, and τ = 5; (b) uses k0 = 0.1,m = 1, σ0 = 0.005, and c = 0.3; (c) corresponds to the case
k0 = 0.1, c = 0.1, σ0 = 0.005, and τ = 5; (d) uses c = 0.001,m = 1, σ0 = 0.005, and τ = 50. (e–h) correspond to the case when
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τ = 50
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Fig. 4 Interaction of a
weak discontinuity with a
characteristic shock giving
rise to reflected and
transmitted waves

generalized conservation systems that are direct consequences of the original system (1), and have the following
forms in the regions behind and ahead of the shock (i.e., to the left and to the right of the discontinuity, which
propagates with the speed V = u):

Gt(x, t, U) + Fx(x, t, U) = H(x, t, U),

G∗t (x, t, U∗) + F∗x(x, t, U∗) = H∗(x, t, U∗), (13)

where U and U∗ are the solution vectors behind and ahead of the shock and G,F and H are given by

G =
(

ρ, ρu,
p

γ − 1
+ 1

2
ρu2, ρσ

)tr

,

F =
(

ρu, ρu2 + p, u

(
γp

(γ − 1)
+ 1

2
ρu2

)
, ρuσ

)tr

,

H =
(−mρu

x
,
−mρu2

x
,−ρ

{
Q + mu

x

(
u2

2
+ a2

(γ − 1)

)}
, ρ

(
Q − muσ

x

))tr

.

As in [21], we associate the initial conditions U(x, t0) = φ(x) and U∗(x, t0) = φ∗(x) defined, respectively, on
the adjacent intervals Iu and Iu∗ of the initial line

Iu = {x|a ≤ x < x1; t = t0} ; Iu∗ = {x| x1 < x ≤ b; t = t0} ,

where the numbers a and b are chosen such that the propagation of a weak discontinuity starting at (x0, t0) in
I = Iu ∪ Iu∗ is confined to the domain of determinacy R associated with I as illustrated in Fig. 4; indeed, U and
U∗ are continuous in their respective domains of determinacy denoted by Ru and Ru∗ , associated with Iu and Iu∗ ,
respectively, but they are discontinuous across the characteristic shock that divides R. We denote by φ(x, t) = 0
the equation of the characteristic in Ru through (x0, t0) forming the initial wave-front trace defined by the equation
dx/dt = λ(1). Let P(xp, tp) be the point at which the fastest discontinuity in U , moving along the characteristic
dx/dt = λ(1) and originating from the point (x0, t0) intersects the shock, dx/dt = V . The equation of the new
wavefront trace through the point P , defined by the equation dx/dt = λ

(1)∗ , is denoted by φ∗(x, t) = 0. As in [20],
the jumps in Ux across the incident, reflected and transmitted waves at P , which we denote by �1(P ),�

(R)
i (P )

and �
∗(T )
i (P ), respectively, are given by the relations

�1(P ) =
m1∑
k=1

α
(1)
k (tp)R(1,k)

s , �
(R)
i (P ) =

mi∑
k=1

α
(i)
k (tp)R(i,k)

s , �
∗(T )
i (P ) =

m∗
i∑

k=1

β
(i)
k (tp)R∗(i,k)

s , (14)

where a subscript s refers to the values evaluated at the point P on the shock. The evolutionary equations which
determine, after interaction, the jump in the shock acceleration |[V̇ ]|, and the amplitudes α

(i)
k and β

(i)
k of reflected
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and transmitted waves, respectively, are given by the matrix equation

|[V̇ ]|(G − G∗)s + (∇G)s

p∑
i=p−q+1

(
mi∑
k=1

α
(i)
k

(
V − λ(i)

)2
R(i,k)

s

)
− (∇∗G∗)s

q∑
j=1

( mj∑
k=1

β
(j)
k

(
V − λ

(j)∗
)2

R
∗(j,k)
s

)

= −(∇G)s

mi∑
k=1

α
(1)
k

(
V − λ(1)

)2
R(1,k)

s , (15)

which is a system of n algebraic equations. Since at t = tp

λ(1) = u +
(

γp

ρ

)1/2

, λ(2) = u, λ(3) = u −
(

γp

ρ

)1/2

, (16)

and

λ(1)∗ = u +
(

γp

ρ − ζ

)1/2

, λ(2)∗ = u, λ(3)∗ = u −
(

γp

ρ − ζ

)1/2

, (17)

it follows that Lax’s evolutionary conditions for a physical shock for an integer l in the interval 1 ≤ l ≤ p, (see
[27]), namely

λ(p) < λ(p−1) < · · · < λ(l+1) < V < λ(l) < · · · < λ(1),

λ
(p)∗ < λ

(p−1)∗ < · · · < λ(l)∗ < V < λ(l−1)∗ < · · · < λ(1)∗ , (18)

imply that, for the system under consideration, we have

λ(3) < λ(2) = u < λ(1), and λ(3)∗ < λ(2)∗ = u < λ(1)∗ . (19)

In effect, this asserts that, when the incident wave with velocity λ(1) at t = tp impinges on the characteristic

shock, it gives rise to one reflected wave with velocity λ(3) and one transmitted wave with velocity λ
(1)∗ along the

characteristics issuing from the collision point. The reflected and transmitted-wave amplitudes α(3) and β(1), and
the jump in shock acceleration |[V̇ ]| = V̇t+p − V̇t−p at the collision time t = tp can be determined from the algebraic
system of equations

(G − G∗)s |[V̇ ]| + (∇G)sR
(3)
s (V − λ(3)

s )2α(3) − (∇∗G∗)sR∗(1)
s (V − λ(1)∗s )2β(1)

= −(∇G)sR
(1)
s (V − λ(1)

s )2α(1). (20)

In view of (2) and (3), the system (20) can be written as the following system of algebraic equations in the unknowns
|[V̇ ]|, α(3) and β(1):

2ζ |[V̇ ]| + α(3) − β(1) = −α(1),

2ζu|[V̇ ]| + (u − a)α(3) − (u + a∗)β(1) = −(u − a)α(1),

2ζu2|[V̇ ]| +
(
u2 − 2ua + 2a2

(γ−1)

)
α(3) −

(
u2 + 2ua∗ + 2a∗2

(γ−1)

)
β(1) = −

(
u2 + 2ua + 2a2

(γ−1)

)
α(1),

2(ρσ∗ + ηρ∗ + ζη)|[V̇ ]| + σα(3) − σ∗β(1) = −σα(1),

(21)

On solving, the above algebraic system yields

β(1) = 2a2

a∗(a∗ + a)
α(1), α(3) = a2ζ

ρ∗(a + a∗)
α(1), |[V̇ ]| = − a2ζ

ρ∗a∗(a + a∗)
α(1), (22)

where α(1) is determined from (12). Equations (22) demonstrate, as would be expected, that in the absence of the
incident wave (i.e., α(1) = 0), the jump in the shock acceleration vanishes and there are no reflected or transmitted
waves. Also, it follows from (22) that, if the incident discontinuity is an expansion wave, the reflected and the
transmitted waves are also expansive and the shock decelerates after impact; however, if the incident discontinuity
is a compression wave, the reflected and transmitted waves are also compressive, and the shock accelerates after
impact. These results are in agreement with the observations made by Courant and Friedrichs [28] that if the shock
front is overtaken by an expansion (respectively, compression) wave, it is decelerated (respectively, accelerated)
and consequently the strength of the shock decreases (respectively, increases).
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6 Results and conclusion

In this paper we have been concerned with the evolutionary behaviour of a characteristic shock in a relaxing gas. A
wave-interaction problem was examined taking into consideration its interaction with a weak wave. The results of
interaction theory were used to study the existence and uniqueness of reflected- and transmitted-wave amplitudes.
Evolutionary behaviour of the shock and the jump in the acceleration together with the amplitudes of incident,
reflected and transmitted waves, influenced by the relaxation effects, have been studied. Computations of the vari-
ables ζ and η, associated with the characteristic shock, have been carried out for the plane (m = 0), cylindrically
symmetric (m = 1) and spherically symmetric (m = 2) flows by taking γ = 1.4, σ0 = 0.005, ζ0 = 0.01, η0 = 0.01
and the values of c, τ and k0 lying in the range 0.001 ≤ c ≤ 0.5, 5 ≤ τ ≤ 50 and 0.001 ≤ k0 ≤ 0.3. It is observed
that the characteristic shock eventually decays; indeed, an increase in any of the parameters c or τ−1 causes ζ and
η to decrease, showing thereby that the characteristic shock is progressively smoothened out under the diffusive
effects of relaxation present in the medium. We also noted that there is an extra attenuation owing to geometrical
spreading of the fluid flow and its variations behind the shock in the sense that an increase in m or k0 also causes
ζ and η to decrease. These numerical results are in conformity with the small- and large-time behaviour of some
of the parameters obtained using standard asymptotic analysis; effects of relaxation, geometrical spreading of the
fluid flow and its variations behind the shock on the evolutionary behaviour of the incident wave, which overtakes
the characteristic shock from behind, have been studied. It is known that an incident compression wave culminates
into a shock after a finite time only when its initial amplitude exceeds a critical value, and the effects of relaxation
and geometrical spreading of the fluid flow and its variations behind the shock serve to resist the onset of a shock;
however, if the initial amplitude of the incident wave is less than the critical value, the wave decays eventually and
an increase in any of the parameters c, τ, k0 or m enhances the decay rate. It was shown that, when the incident wave
hits the shock, it gives rise to a reflected wave and a transmitted wave, whose amplitudes are determined along with
the jump in the shock acceleration at the collision time. It is observed, as would be expected, that in the absence of
the incident wave, neither there is a jump in the shock acceleration nor there exist reflected and transmitted waves.
It has been shown that the reflected and transmitted waves are expansive and the shock decelerates after the impact,
whenever the incident wave is expansive; however, the reflected and transmitted waves are compressive and the
shock accelerates after the impact whenever the incident wave is compressive. These results are in agreement with
the observations made by Courant and Friedrichs [28].
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